Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3319-3332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849433

RESUMO

Cyanophages are crucial for regulating cyanobacterial populations, but their influence on anatoxin-producing Microcoleus mat dynamics remains unexplored. Here, we use metagenomics to explore phage presence in benthic mats from the Wolastoq|Saint John River (New Brunswick, Canada) and the Eel River (California, USA). We recovered multiple viral-like sequences associated with different putative bacterial hosts, including two cyanophage genomes with apparently different replication strategies. A temperate cyanophage was found integrated in the genomes of Microcoleus sp. 3 recovered from the Eel River and is phylogenetically related to Phormidium phages. We also recovered novel virulent cyanophage genomes from Wolastoq and Eel River mats that were dominated by anatoxin-producing Microcoleus species predicted to be the host. Despite the geographical distance, these genomes have similar sizes (circa 239 kbp) and share numerous orthologous genes with high sequence identity. A considerable reduction of the anatoxin-producing Microcoleus species in Wolastoq mats following the emergence of the virulent phage suggests that phage infections have an important role in limiting the abundance of this toxigenic cyanobacterium and releasing anatoxins into the surrounding water. Our results constitute the first report of cyanophages predicted to infect mat-forming Microcoleus species associated with anatoxin production.


Assuntos
Cianobactérias , Cianobactérias/genética , Toxinas de Cianobactérias , Tropanos , Rios/microbiologia
2.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327962

RESUMO

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
3.
Harmful Algae ; 124: 102405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164558

RESUMO

The presence of toxigenic benthic cyanobacteria in riverine ecosystems is an increasing concern around the world. In 2018, the death of three dogs along the Wolastoq (also known as the Saint John River) in New Brunswick, Canada, was attributed to anatoxin exposure after they ingested benthic microbial mats found along the shore. Here, we shotgun sequenced the DNA of 15 non-axenic cyanobacterial isolates derived from four anatoxin-containing benthic mat samples associated with the dog deaths. Anatoxins were produced by some of the isolates, but not all. We retrieved near-complete Microcoleus metagenome-assembled genomes (MAGs) from the isolates that are closely related to anatoxin-producing Microcoleus from the Cardrona River (New Zealand), although the Microcoleus MAGs from the Wolastoq varied in the presence/absence of the anatoxin-a biosynthesis cluster. Sequence similarity at the genomic level suggests that toxigenic and non-toxigenic Microcoleus MAGs from the Wolastoq belong to the same species but are separate subspecies. The toxigenic and nontoxic Wolastoq Microcoleus subspecies coexisted in the mat samples in similar relative abundance. Overall genomic comparisons revealed that toxigenic Microcoleus MAGs are longer and code for more accessory genes than their non-toxigenic relatives, suggesting a differential responsiveness to changing environments, stress conditions and nutrient availability.


Assuntos
Toxinas Bacterianas , Cianobactérias , Animais , Cães , Toxinas Bacterianas/toxicidade , Novo Brunswick , Ecossistema , Cianobactérias/genética , Canadá , Genômica
4.
ISME Commun ; 3(1): 21, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918616

RESUMO

Protists (microbial eukaryotes) are a critically important but understudied group of microorganisms. They are ubiquitous, represent most of the genetic and functional diversity among eukaryotes, and play essential roles in nutrient and energy cycling. Yet, protists remain a black box in marine sedimentary ecosystems like the intertidal mudflats in the Bay of Fundy. The harsh conditions of the intertidal zone and high energy nature of tides in the Bay of Fundy provide an ideal system for gaining insights into the major food web players, diversity patterns and potential structuring influences of protist communities. Our 18S rDNA metabarcoding study quantified seasonal variations and vertical stratification of protist communities in Bay of Fundy mudflat sediments. Three 'SAR' lineages were consistently dominant (in terms of abundance, richness, and prevalence), drove overall community dynamics and formed the core microbiome in sediments. They are Cercozoa (specifically thecate, benthic gliding forms), Bacillariophyta (mainly cosmopolitan, typically planktonic diatoms), and Dinophyceae (dominated by a toxigenic, bloom-forming species). Consumers were the dominant trophic functional group and were comprised mostly of eukaryvorous and bacterivorous Cercozoa, and omnivorous Ciliophora, while phototrophs were dominated by Bacillariophyta. The codominance of Apicomplexa (invertebrate parasites) and Syndiniales (protist parasites) in parasite assemblages, coupled with broader diversity patterns, highlighted the combined marine and terrestrial influences on microbial communities inhabiting intertidal sediments. Our findings, the most comprehensive in a hypertidal benthic system, suggest that synergistic interactions of both local and regional processes (notably benthic-pelagic coupling) may drive heterogenous microbial distribution in high-energy coastal systems.

5.
Plant Direct ; 6(10): e454, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311903

RESUMO

The loss of photosynthesis in land plants and algae is typically associated with parasitism but can also occur in free-living species, including chlamydomonadalean green algae. The plastid genomes (ptDNAs) of colorless chlamydomonadaleans are surprisingly diverse in architecture, including highly expanded forms (Polytoma uvella and Leontynka pallida) as well as outright genome loss (Polytomella species). Here, we explore the ptDNAs of Hyalomonas (Hm.) oviformis (SAG 62-27; formerly known as Polytoma oviforme) and Hyalogonium (Hg.) fusiforme (SAG 62-1c), each representing independent losses of photosynthesis within the Chlamydophyceae. The Hm. oviformis ptDNA is moderately sized (132 kb) with a reduced gene complement (but still encoding the ATPase subunits) and is in fact smaller than that of its photosynthetic relative Hyalomonas chlamydogama SAG 11-48b (198.3 kb). The Hg. fusiforme plastome, however, is the largest yet observed in nonphotosynthetic plants or algae (~463 kb) and has a coding repertoire that is almost identical to that of its photosynthetic relatives in the genus Chlorogonium. Furthermore, the ptDNA of Hg. fusiforme shows no clear evidence of pseudogenization, which is consistent with our analyses showing that Hg. fusiforme is the nonphotosynthetic lineage of most recent origin among known colorless Chlamydophyceae. Together, these new ptDNAs clearly show that, in contrast to parasitic algae, plastid genome compaction is not an obligatory route following the loss of photosynthesis in free-living algae, and that certain chlamydomonadalean algae have a remarkable propensity for genomic expansion, which can persist regardless of the trophic strategy.

6.
Front Microbiol ; 13: 1020932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246272

RESUMO

Genes of unknown function constitute a considerable fraction of most bacterial genomes. In a Tn5-based search for stress response genes in the nitrogen-fixing facultative endosymbiont Sinorhizobium (Ensifer) meliloti, we identified a previously uncharacterized gene required for growth on solid media with increased NaCl concentrations. The encoded protein carries a predicted thioredoxin fold and deletion of the gene also results in increased sensitivity to hydrogen peroxide and cumene hydroperoxide. We have designated the gene srlA (stress resistance locus A) based on these phenotypes. A deletion mutant yields phenotypic revertants on high salt medium and genome sequencing revealed that all revertants carry a mutation in genes homologous to either cenK or cenR. srlA promoter activity is abolished in these revertant host backgrounds and in a strain carrying a deletion in cenK. We also observed that the srlA promoter is autoregulated, displaying low activity in a wildtype (wt) host background and high activity in the srl deletion mutant background. The srlA promoter includes a conserved inverted repeat directly upstream of the predicted -35 subsequence. A mutational analysis demonstrated that the site is required for the high promoter activity in the srlA deletion background. Electromobility shift assays using purified wildtype CenR response regulator and a D55E phosphomimetic derivative suggest this protein acts as a likely Class II activator by binding promoter DNA. These results document the first identified CenK-CenR regulon member in S. meliloti and demonstrate this two-component regulatory system and gene srlA influences cellular growth and persistence under certain stress-inducing conditions.

7.
Biol Lett ; 18(6): 20220059, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728616

RESUMO

Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.


Assuntos
Altruísmo , Volvox , Evolução Biológica , Reprodução , Volvox/genética
8.
J Phycol ; 57(6): 1768-1776, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34490918

RESUMO

Cyanotoxins are an emerging threat to freshwater resources worldwide. The most frequently reported cyanotoxins are the microcystins, which threaten the health of humans, wildlife, and ecosystems. Determining the potential for microcystin production is hindered by a lack of morphological features that correlate with microcystin production. However, amplicon-based methods permit the detection of microcystin biosynthesis genes and were employed to assess the toxin potential in Lake Utopia, NB, Canada, an oligotrophic lake that occasionally experiences cyanobacteria blooms. Samples collected at 2 week intervals from June 27th to September 27th, 2016, were screened by polymerase chain reaction (PCR) for the microcystin synthetase E gene (mcyE). The mcyE gene was present in some samples every sampling day, despite microcystin not being detected via ELISA, and was most frequently associated with the larger pore size fractions of the serially filtered samples. Further PCR surveys using primer sets to amplify genus-specific (e.g., Microcystis, Anabaena/Dolichospermum, and Planktothrix) mcyE fragments identified Microcystis as the only taxa in Lake Utopia with toxigenic potential. Sequencing of the 16S rRNA V3-V4 region revealed a community dominated by members of the order Synechococcales (from 38 to 96% relative abundance), but with significant presence of taxa from Cyanobacteriales including Microcystaceae and Nostocaceae. A persistent Microcystis population was detected in samples both testing positive and negative for the mcyE gene, highlighting the importance of identifying cyanotoxin production potential by gene presence and not species identity. To our knowledge, this study represents the first application of amplicon-based approaches to studying toxic cyanobacteria in an understudied region-Atlantic Canada.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Toxinas de Cianobactérias , Ecossistema , Lagos , Microcistinas , RNA Ribossômico 16S/genética
9.
Eur J Protistol ; 80: 125807, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091379

RESUMO

Winogradsky columns have been widely used to study soil microbial communities, but the vast majority of those investigations have focused on the ecology and diversity of bacteria. In contrast, microbial eukaryotes (ME) have been regularly overlooked in studies based on experimental soil columns. Despite the recognized ecological relevance of ME in soil communities, investigations focused on ME diversity and the abundance of certain groups of interest are still scarce. In the present study, we used DNA metabarcoding (high-throughput sequencing of the V4 region of the 18S rRNA locus) to survey the ME diversity and abundance in an experimental Winogradsky soil column. Consistent with previous surveys in natural soils, our survey identified members of Cercozoa (Rhizaria; 31.2%), Apicomplexa and Ciliophora (Alveolata; 12.5%) as the predominant ME groups, but at particular depths we also detected the abundant presence of ME lineages that are typically rare in natural environments, such as members of the Vampyrellida (Rhizaria) and Breviatea (Amorphea). Our survey demonstrates that experimental soil columns are an efficient enrichment-culture approach that can enhance investigations about the diversity and ecology of ME in soils.


Assuntos
Biodiversidade , Ecologia/métodos , Eucariotos/classificação , Solo/parasitologia , Eucariotos/genética , RNA Ribossômico 18S/genética
10.
J Eukaryot Microbiol ; 68(1): e12831, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142007

RESUMO

Cyanophora is the glaucophyte model taxon. Following the sequencing of the nuclear genome of C. paradoxa, studies based on single organelle and nuclear molecular markers revealed previously unrecognized species diversity within this glaucophyte genus. Here, we present the complete plastid (ptDNA) and mitochondrial (mtDNA) genomes of C. kugrensii, C. sudae, and C. biloba. The respective sizes and coding capacities of both ptDNAs and mtDNAs are conserved among Cyanophora species with only minor differences due to specific gene duplications. Organelle phylogenomic analyses consistently recover the species C. kugrensii and C. paradoxa as a clade and C. sudae and C. biloba as a separate group. The phylogenetic affiliations of the four Cyanophora species are consistent with architectural similarities shared at the organelle genomic level. Genetic distance estimations from both organelle sequences are also consistent with phylogenetic and architecture evidence. Comparative analyses confirm that the Cyanophora mitochondrial genes accumulate substitutions at 3-fold higher rates than plastid counterparts, suggesting that mtDNA markers are more appropriate to investigate glaucophyte diversity and evolutionary events that occur at a population level. The study of complete organelle genomes is becoming the standard for species delimitation and is particularly relevant to study cryptic diversity in microbial groups.


Assuntos
Cyanophora/genética , Evolução Molecular , Variação Genética , Genoma Mitocondrial , Genomas de Plastídeos , Evolução Biológica , DNA Mitocondrial/análise
11.
Genome Biol Evol ; 11(1): 174-188, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534986

RESUMO

Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically "ancestral," they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.


Assuntos
Genomas de Plastídeos , Glaucófitas/genética , Rearranjo Gênico , Mutagênese Insercional , Filogenia , RNA/genética
12.
Commun Integr Biol ; 10(1): e1283080, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377793

RESUMO

The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very small and highly compact. This is not surprising: a heterotrophic existence means that genes for photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of compactness, why can't those of nonphotosynthetic species? Well, recently we showed that they can. The free-living, heterotrophic green alga Polytoma uvella has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most bloated plastome yet found in a heterotroph. In this addendum to the primary study, we elaborate on why the P. uvella plastome is so inflated, discussing the potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in nonphotosynthetic lineages.

13.
Plant Physiol ; 173(2): 932-943, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27932420

RESUMO

The loss of photosynthesis is frequently associated with parasitic or pathogenic lifestyles, but it also can occur in free-living, plastid-bearing lineages. A common consequence of becoming nonphotosynthetic is the reduction in size and gene content of the plastid genome. In exceptional circumstances, it can even result in the complete loss of the plastid DNA (ptDNA) and its associated gene expression system, as reported recently in several lineages, including the nonphotosynthetic green algal genus Polytomella Closely related to Polytomella is the polyphyletic genus Polytoma, the members of which lost photosynthesis independently of Polytomella Species from both genera are free-living organisms that contain nonphotosynthetic plastids, but unlike Polytomella, Polytoma members have retained a genome in their colorless plastid. Here, we present the plastid genome of Polytoma uvella: to our knowledge, the first report of ptDNA from a nonphotosynthetic chlamydomonadalean alga. The P. uvella ptDNA contains 25 protein-coding genes, most of which are related to gene expression and none are connected to photosynthesis. However, despite its reduced coding capacity, the P. uvella ptDNA is inflated with short repeats and is tens of kilobases larger than the ptDNAs of its closest known photosynthetic relatives, Chlamydomonas leiostraca and Chlamydomonas applanata In fact, at approximately 230 kb, the ptDNA of P. uvella represents the largest plastid genome currently reported from a nonphotosynthetic alga or plant. Overall, the P. uvella and Polytomella plastid genomes reveal two very different evolutionary paths following the loss of photosynthesis: expansion and complete deletion, respectively. We hypothesize that recombination-based DNA-repair mechanisms are at least partially responsible for the different evolutionary outcomes observed in such closely related nonphotosynthetic algae.


Assuntos
Evolução Biológica , Clorófitas/genética , Genomas de Plastídeos , Fotossíntese/genética , Sequência Rica em At/genética , Sequência de Bases , Sequência Conservada/genética , DNA de Cloroplastos/genética , Funções Verossimilhança , Filogenia
14.
Mitochondrial DNA B Resour ; 2(2): 405-407, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-33473842

RESUMO

The chloroplast genomes (cpDNA) of five Chlamydomonas reinhardtii nonphotosynthetic mutants were sequenced. The architecture, gene content, and synteny of the cpDNAs from the five mutants are identical to the C. reinhardtii 'wild-type' plastome. A small number of differences at sequence level between coding regions of the reference genome and the cpDNAs of the mutants were detected. The vast majority of the sequence differences were synonymous and likely due to nucleotide substitutions preceding the generation of the mutant strains, but not caused by the erosion of the cpDNA following the loss of photosynthesis.

15.
Genome Biol Evol ; 7(3): 656-63, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25663488

RESUMO

The mitochondrial genomes of chlamydomonadalean green algae are renowned for their highly reduced and conserved gene repertoires, which are almost fixed at 12 genes across the entire lineage. The sizes of these genomes, however, are much more variable, with some species having small, compact mitochondrial DNAs (mtDNAs) and others having expanded ones. Earlier work demonstrated that the halophilic genus Dunaliella contains extremely inflated organelle genomes, but to date the mtDNA of only one isolate has been explored. Here, by surveying mtDNA architecture across the Chlamydomonadales, we show that various Dunaliella species have undergone massive levels of mitochondrial genomic expansion, harboring the most inflated, intron-dense mtDNAs available from chlorophyte green algae. The same also appears to be true for their plastid genomes, which are potentially among the largest of all plastid-containing eukaryotes. Genetic divergence data are used to investigate the underlying causes of such extreme organelle genomic architectures, and ultimately reveal order-of-magnitude differences in mitochondrial versus plastid mutation rates within Dunaliella.


Assuntos
Clorófitas/genética , Evolução Molecular , Tamanho do Genoma , Genoma Mitocondrial , DNA Mitocondrial/química , Genoma de Cloroplastos
16.
Proc Natl Acad Sci U S A ; 111(44): 15827-32, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25267653

RESUMO

Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.


Assuntos
Arabidopsis , Clorófitas , Evolução Molecular , Regulação da Expressão Gênica de Plantas/fisiologia , Fitocromo , Transdução de Sinais/fisiologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Dados de Sequência Molecular , Filogenia , Fitocromo/biossíntese , Fitocromo/genética , Estrutura Terciária de Proteína , Transcriptoma/fisiologia
17.
Genome Biol Evol ; 6(10): 2774-85, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25281844

RESUMO

A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic eukaryotes. However, so far only the plastid and mitochondrial genomes of the glaucophytes Cyanophora paradoxa (strain CCMP 329) and Glaucocystis nostochinearum (strain UTEX 64) have been completely sequenced. Here, we present the complete mitochondrial genomes of Gloeochaete wittrockiana SAG 46.84 (36.05 kb; 33 protein-coding genes, 6 unidentified open reading frames [ORFs], and 28 transfer RNAs [tRNAs]) and Cyanoptyche gloeocystis SAG 4.97 (33.24 kb; 33 protein-coding genes, 6 unidentified ORFs, and 26 tRNAs), which represent two genera distantly related to the "well-known" Cyanophora and Glaucocystis. The mitochondrial gene repertoire of the four glaucophyte species is highly conserved, whereas the gene order shows considerable variation. Phylogenetic analyses of 14 mitochondrial genes from representative taxa from the major eukaryotic supergroups, here including novel sequences from the glaucophytes Cyanophora tetracyanea (strain NIES-764) and Cyanophora biloba (strain UTEX LB 2766), recover a clade uniting the three Archaeplastida lineages; this recovery is dependent on our novel glaucophyte data, demonstrating the importance of greater taxon sampling within the glaucophytes.


Assuntos
Cyanophora/genética , Genoma Mitocondrial/genética , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/genética
18.
ISME J ; 8(12): 2517-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25171333

RESUMO

Vitamin B1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.


Assuntos
Clorófitas/genética , Riboswitch , Tiamina/metabolismo , Clorófitas/enzimologia , Clorófitas/metabolismo , Genes de Plantas , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Fitoplâncton/genética , Fitoplâncton/metabolismo , Água do Mar , Tiamina Pirofosfato/biossíntese
19.
Mol Phylogenet Evol ; 79: 380-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017510

RESUMO

A lot is known about the evolution and architecture of plastid, mitochondrial, and nuclear genomes, but surprisingly little is known about their relative rates of mutation. Most available relative-rate data come from seed plants, which, with few exceptions, have a mitochondrial mutation rate that is lower than those of the plastid and nucleus. But new findings from diverse plastid-bearing lineages have shown that for some eukaryotes the mitochondrial mutation rate is an order of magnitude greater than those of the plastid and nucleus. Here, we explore for the first time relative rates of mutation within the Glaucophyta-one of three main lineages that make up the Archaeplastida (or Plantae sensu lato). Nucleotide substitution analyses from distinct isolates of the unicellular glaucophyte Cyanophora paradoxa reveal 4-5-fold lower rates of mutation in the plastid and nucleus than the mitochondrion, which is similar to the mutational pattern observed in red algae and haptophytes, but opposite to that of seed plants. These data, together with data from previous reports, suggest that for much of the known photosynthetic eukaryotic diversity, plastid DNA mutations occur less frequently than those in mitochondrial DNA.


Assuntos
Cyanophora/classificação , DNA Mitocondrial/genética , Taxa de Mutação , Plastídeos/genética , Evolução Biológica , Núcleo Celular/genética , Cyanophora/genética , DNA de Plantas/genética , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA
20.
PLoS One ; 9(5): e96696, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809444

RESUMO

The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, ß, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Evolução Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Bactérias/enzimologia , Bactérias/genética , Complexo I de Transporte de Elétrons/genética , Transferência Genética Horizontal , Óperon/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...